group. Each of the three main lines showed fine structure due to long range $\mathrm{C}-\mathrm{H}$ coupling, but the central multiplet had a width at half-height of 12 Hz compared to the outside multiplets of 8 Hz .
(13) G. A. Olah, A. M. White, J. R. De Member, A. Commeyras, and C. Y. Lui, J. Am. Chem. Soc., 92, 4627 (1970).
(14) G. A. Olah and G. Liang, J. Am. Chem. Soc., 95, 3792 (1973).
(15) The value for $15, \mathrm{R}=\mathrm{CH}_{3}$, was reported as $219 \mathrm{~Hz}^{14}$ which appears anomalously high.
(16) J. E. Huheey, J. Chem. Phys., 45, 405 (1966); A. W. Douglas, ibid., 45, 3465 (1966); W. M. Litchman and D. M. Grant, J. Am. Chem. Soc., 89, 6775 (1967).
(17) G. L. Closs and R. B. Larrabee, Tetrahedron Lett., 287 (1965)
(18) K. Wüthrich, S. Meiboom, and L. C. Snyder, J. Chem. Phys., 52, 230 (1970).
(19) G. A. Olah, G. Liang, G. D. Mateescu, and J. L. Riemenschneider, J. Am Chem. Soc., 95, 8698 (1973).
(20) Using Olah's values ${ }^{12}$ for 4 and 5 , these values are $22-24 \mathrm{~Hz}$.
(21) Compare $\mathrm{J}_{\mathrm{C}_{2} \mathrm{H}}$ for propanone (126), 3-pentanone (124), and 2,4 -di-methyl-3-pentanone $(128)^{22}$ with that for propane $\left(\mathrm{CH}_{3}, 125 ; \mathrm{CH}_{2}\right.$,
128), ${ }^{9 \mathrm{a}}$ and that for cyclohexanone (129, this work) with cyclohexane (126). ${ }^{9 a}$
(22) L. M. Jackman and D. P. Kelly, J. Chem. Soc. B, 102 (1970)
(23) G. A. Olah, G. Liang, K. A. Bablak, and R. K. Murray, J. Am. Chem. Soc., 96, 6794 (1974).
(24) J. E. Baldwin and W. D. Foglesong, J. Am. Chem. Soc., 90, 4303, 4311 (1968).
(25) There is even less difference ($\leq 7 \mathrm{~Hz}$) if we use Olah's values of 187 for 4 and 185 for $5{ }^{12}$
(26) W. J. Hehre and P. C. Hiberty, J. Am. Chem. Soc., 96, 302 (1974).
(27) D. F. Eaton and T. G. Traylor, J. Am. Chem. Soc., 96, 1226 (1974).
(28) P. V. R. Schleyer and G. W. Van Dine, J. Am. Chem. Soc., 88, 2321 (1966).
(29) C. D. Poulter and C. J. Spillner, J. Am. Chem. Soc., 96, 7591 (1974)
(30) J. D. Buhler, J. Org. Chem., 38, 904 (1973).
(31) R. D. Woodworth and P. S. Skell, J. Am. Chem. Soc., 79, 2542 (1957).
(32) H. C. Brown and E. N. Peters, J. Am. Chem. Soc., 97, 1927 (1975).
(33) H. C. Brown, G. W. Kramer, A. B. Levy, and M. M. Midland, "Organic Syntheses via Boranes', Wiley, New York, N.Y., 1975, Chapter 9.

The Rates of Ionization of Arylamino Ketones Possessing the Potentiality for Intramolecular Imine Formation and Intramolecular Proton Abstraction

Sanford N. Gitel and C. David Gutsche*
Contribution from the Department of Chemistry, Washington University, St. Louis, Missouri 63130. Received January 20, 1975

Abstract

The rates of ionization of a series of compounds of the general structure $\operatorname{Ar}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}$ where Ar is phenyl or 2-pyridyl and n is 0,1 , or 2 have been measured by deuterium exchange methods. On the basis of the results it is concluded that (a) the formation of the cyclic pyrrolinium compounds enhances the rate of ionization by ca. 10^{7} when pyridine is the proton acceptor, (b) the proximity to the pyrrolinium ring of a second positive charge (i.e., the protonated pyridine ring in the 2 -pyridyl compounds) enhances the ionization rate via an inductive effect, a field effect, or both, and (c) intramolecular proton transfer occurs to a small but probably real extent in the ionization of the 2-pyridyl compounds in which n is 1 and 2 .

The aldolization reaction of dihydroxyacetone has been shown to be susceptible to pyridine catalysis, ${ }^{\text {' and }}$ its in vivo counterpart with dihydroxyacetone phosphate is known to involve imine intermediates. ${ }^{2}$ As part of a program dealing with the synthesis of polyfunctional catalysts for this process, a series of arylamino ketones has been studied to assess the consequences of (a) the intramolecular imine formation, (b) the proximity of positive charge to the imine moiety, and (c) the proximity of a pyridyl moiety to the site of carbanion formation, employing the rate of deuterium exchange as the assay procedure.

Synthesis of Arylamino Ketones. By means of the reaction sequence shown in Figure 1, compounds of the general structure $\operatorname{Ar}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}$ were synthesized in which the aryl group is a pyridyl or a phenyl moiety and n has values of 0,1 , and 2 . The starting material in every instance was 5 -chloro-2-pentanone ${ }^{3}$ which was converted to the ketal with methyl orthoformate, alkylated with the appropriate arylalkylamine, and hydrolyzed to the product 1-5. Except for compound 1, the isolated compounds exist primarily in the cyclic iminium form ($\mathbf{2 b} \mathbf{- 5 b}$) rather than the amino ketone form (2a-5a).

The assignment of structure to compounds $\mathbf{2 b - 5 b}$ is based on the elemental analysis of the perchlorate salts and on the ir and NMR characteristics. For additional verification, two alkyl-substituted pyrrolinium perchlorates of known structure ${ }^{4.5}$ were prepared, and their spectral characteristics were compared with those of compounds $\mathbf{2 b}-\mathbf{5 b}$.
$\mathrm{p} K_{\mathrm{a}}$ Values of Compounds 1-5. Using titrimetric (for 1a, $\mathbf{3 b}, \mathbf{4 b}$, and $\mathbf{5 b}$) and spectrophotometric (for $\mathbf{2 b}$) techniques, the $\mathrm{p} K_{\mathrm{a}}$ values of compounds $1-5$ were determined (see Table I). The value for the pyridylamino ketone 1 agrees well with the reported values for 2 -aminopyridine of 6.82^{6} and $6.51,{ }^{7}$ supporting the open chain structure (1a). The phenyl analog (4) of compound $\mathbf{1}$ has a $\mathrm{p} K_{\mathrm{a}}$ that is approxj= mately $3 \mathrm{p} K$ units greater than that of aniline ($\mathrm{p} K_{\mathrm{a}}=4.62$), commensurate with the cyclic iminium structure ($\mathbf{4 b}$). The greater tendency for the phenylamino ketone 4a to cyclize, compared with the pyridylmethyl ketone 1a, is probably attributable to the greater basicity of the nitrogen atom in 4a; although the macroscopic $\mathrm{p} K_{\mathrm{a}}$ of 2-aminopyridine exceeds that of aniline by ca. 2 pK units, the amino group of 2 -aminopyridine behaves as a less basic entity than the amino group of aniline. In fact, the $\mathrm{p} K_{1}$ of 2 -ammoniumpyridinium dication has been determined to be $-7.6 .{ }^{8}$

The $\mathrm{p} K_{\mathrm{a}}$ values for the pyrrolinium moiety of $\mathbf{2 b}, \mathbf{3 b}$, and $\mathbf{5 b}$ are $11.00,11.87$, and 11.76, respectively, in agreement with the reported values of 11.94 for 1,2 -dimethyl- Δ^{\prime}-pyrrolinium perchlorate, 11.92 for 1 -ethyl-2-methyl- Δ^{\prime}-pyrrolinium perchlorate, and 11.90 for 1-butyl-2-methyl- Δ^{\prime}-pyrrolinium perchlorate; ${ }^{9}$ the group attached to the nitrogen atom of the pyrrolinium ring has relatively little effect on its $\mathrm{p} K_{\mathrm{a}}$. The pyrrolinium moiety, however, has a considerable influence on the $\mathrm{p} K_{\mathrm{a}}$ value of the pyridinium moiety, reducing it to 1.41 in $\mathbf{2 b}$ and 3.42 in $\mathbf{3 b} .{ }^{10}$

Of interest with respect to the rate of proton exchange

Figure 1. Synthesis of arylamino ketones.

Table I. $\mathrm{p} K_{\mathrm{a}}$ Values of Compounds I-5 at 26°
(
with compounds 2 and 3 are the true (microscopic) $\mathrm{p} K_{\mathrm{a}}$ values for the pyrrolinium moiety, i.e., the value of $\mathrm{p} K_{\mathrm{d}}$ in the equilibrium cycle shown in Figure 2. From the measured values of $\mathrm{p} K_{1}$ and $\mathrm{p} K_{2}$ for $\mathbf{2 b}$ and $\mathbf{3 b}\left(\mathrm{p} K_{1}=\mathrm{p} K_{\mathrm{c}}\right.$ and $\mathrm{p} K_{2}=\mathrm{p} K_{\mathrm{e}}$) and on the assumption that $\mathrm{p} K_{\mathrm{f}}$ is ca. 6 (i.e., the value for 2 -alkylpyridines ${ }^{11}$), values of 6.40 and 9.30 can be calculated for $\mathrm{p} K_{\mathrm{d}}$ of $\mathbf{2 b}$ and $\mathbf{3 b}$, respectively.

Rate of Proton Exchange in Compounds 1-5. By means of a method similar to that used by Hine and coworkers ${ }^{12}$ in the study of the rate of proton exchange in isobutyraldehyde, the rate of deuterium incorporation of compounds $1-5$ in $\mathrm{D}_{2} \mathrm{O}$-dimethyl sulfoxide- d_{6} (4:1) was measured by NMR spectroscopy. Although the protons of the methyl group attached to $\mathrm{C}-2$ of the pyrrolinium ring in $\mathbf{2 b} \mathbf{- 5 b}$ as well as the methylene protons at $\mathrm{C}-5$ of the ring are activated by the adjacent iminium function, the methyl protons are found to exchange $10-100$ times more rapidly than the methylene protons. The disappearance of the resonances arising from the methyl group was used as a means for assessing the rate of proton exchange, and the data in Table II for compounds $\mathbf{1 - 5}$ at various pH levels were obtained.

The pH of each solution was calculated from the amount of hydrogen ion or hydroxide ion that was added, the concentration of the substrate, and the $\mathrm{p} K_{\mathrm{a}}$ of the substrate.

Figure 2. Acid-base equilibria of compounds 2 and $\mathbf{3}$,
Although $\mathrm{p} K_{\mathrm{a}}$ values in aqueous dimethyl sulfoxide are different from those in pure water, the differences are predicted to be relatively small, ${ }^{13}$ and any corrections should be essentially the same for all of the compounds involved. Attempts to maintain a constant ionic strength in the various solutions by adding potassium chloride failed because of precipitate formation in the $\mathrm{H}_{2} \mathrm{O}$-DMSO solvent. Since a comparison of the water-catalyzed exchange of compound $\mathbf{4 b}$ at a hydrogen ion concentration of 0.57 M and $1.4 \times$ $10^{-3} \mathrm{M}$ shows almost no variation in rate (although the ionic strength is considerably different in the two reaction mixtures), the inability of maintaining a constant ionic strength is thought not to cause significant errors.

Discussion

All of the kinetic data, with the exception of the reaction of $\mathbf{5 b}$ in the presence of pyridine, conform to the expression

$$
k[\mathrm{~A}]_{\mathrm{t}}=k_{\mathrm{A}}[\mathrm{~A}]+\underset{k_{\mathrm{A}-\mathrm{AH}}[\mathrm{~A}]\left[\mathrm{AH}^{+}\right]}{K_{\mathrm{AH}}\left[\mathrm{AH}^{+}\right]+k_{\mathrm{AH}_{2}}\left[\mathrm{AH}_{2}{ }^{2+}\right]+}
$$

where $[\mathrm{A}]_{t}$ is the total concentration of the reactant in all forms, and $[\mathrm{A}],\left[\mathrm{AH}^{+}\right]$, and $\left[\mathrm{AH}_{2}{ }^{2+}\right]$ are the concentrations of the reactant in the uncharged, monoprotonated, and diprotonated forms, respectively. By employing this expression and using the kinetic data shown in Table Il, the specific rates shown in Table III are obtained. The specific rates $k_{\mathrm{A}}, k_{\mathrm{AH}}$, and $k_{\mathrm{AH}_{2}}$ correspond to the water-induced deprotonation of the free base species, the monoprotonated species, and the diprotonated species. The specific rate $k_{\text {A-AH }}$ corresponds to the free base-induced deprotonation of the monoprotonated species, calculated on the assumption that no other base is involved; to the extent that bases other than A do act as the proton acceptor, however, the value shown in Table III will be diminished. Hydroxide ion, for example, might act in this capacity, and attempts were made to determine the k_{OH} value for the deprotonation of compounds $\mathbf{4 b}$ and $\mathbf{5 b}$. Because of the necessity of working at very low hydroxide concentrations, however, accurate assessments of this value were not possible; only for 5 was an approximate value of $9 \pm 3 \times 10^{3} M^{-1} \mathrm{~min}^{-1}$ obtained. Hydroxide-induced deprotonation for compound 1 was considered to contribute very little, for if it is assumed that it is comparable in rate to that of the hydroxide-induced ionization of acetone ${ }^{14}\left(4 \times 10^{-3} M^{-1} \min ^{-1}\right)$, the calculated rate at pH 7 is only 0.03% of the observed value. The mechanism pictured in Figure 3, therefore, is postulated to be the major pathway for the deprotonation of compound 1.

Pyridine was demonstrated to be an effective catalyst, a reaction of $\mathbf{5 b}$ carried out in 0.15 M pyridine solution proceeding at a considerably increased rate and providing a $k_{\text {pyridine }}$ value of $1.5 \mathrm{M}^{-1} \mathrm{~min}^{-1}$. This is approximately 10^{7} times greater than the pyridine-catalyzed deprotonation of acetone ${ }^{15}\left(8 \times 10^{-8} M^{-1} \mathrm{~min}^{-1}\right)$ and dyhydroxyacetone ${ }^{1}$ ($10^{-7} \mathrm{M}^{-1} \mathrm{~min}^{-1}$), an enhancement factor comparable to

Table II. Rates of Proton Exchange in the Methyl Groups of Compounds 1-5

Compd	$\left[\mathrm{H}^{+}\right]$	[A]	$\left[\mathrm{AH}^{+}\right]$	$\left[\mathrm{AH}_{2}{ }^{+}\right]$	$k, \min ^{-1}$
1 a	0.57	Very small	0.33		Less than 10^{-7}
	1.8×10^{-7}	0.18	0.25		$3.85 \pm 0.13 \times 10^{-3}$
	1.2×10^{-7}	0.18	0.17		$3.28 \pm 0.09 \times 10^{-3}$
	1.0×10^{-7}	0.18	0.14		$3.10 \pm 0.10 \times 10^{-3}$
	5.7×10^{-8}	0.18	0.08		$2.50 \pm 0.08 \times 10^{-3}$
	3.5×10^{-7}	0.09	0.24		$2.50 \pm 0.08 \times 10^{-3}$
2b	0.58		0.015	0.185	$2.1 \pm 0.1 \times 10^{-2}$
	0.59		0.025	0.375	$2.0 \pm 0.1 \times 10^{-2}$
	8.7×10^{-2}		0.09	0.17	$1.5 \pm 0.1 \times 10^{-2}$
	1.0×10^{-2}		0.19	0.05	$0.64 \pm 0.03 \times 10^{-2}$
3b	0.34		0	0.28	$5.0 \pm 0.4 \times 10^{-4}$
	7.0×10^{-3}		0.015	0.265	$1.5 \pm 0.1 \times 10^{-3}$
	1.9×10^{-3}		0.047	0.233	$4.3 \pm 0.2 \times 10^{-3}$
	8.0×10^{-4}		0.09	0.19	$6.3 \pm 0.3 \times 10^{-3}$
	2.1×10^{-4}		0.18	0.10	$12 \pm 1 \times 10^{-3}$
4b	0.57	1×10^{-8}	0.28		$13 \pm 1 \times 10^{-4}$
	1.4×10^{-3}	4×10^{-6}	0.28		$13 \pm 1 \times 10^{-4}$
	1.0×10^{-4}	6×10^{-5}	0.28		$16 \pm 1 \times 10^{-4}$
	8.4×10^{-5}	7×10^{-5}	0.28		$17 \pm 1 \times 10^{-4}$
5b	0.33	2×10^{-12}	0.31		$8 \pm 1 \times 10^{-5}$
	1.0×10^{-7}	6×10^{-6}	0.38		$13 \pm 1 \times 10^{-4}$
	1.0×10^{-7}	3×10^{-6}	0.19		$10 \pm 1 \times 10^{-4}$
	3.3×10^{-8}	2×10^{-5}	0.31		$27 \pm 1 \times 10^{-4}$
	7.7×10^{-9}	7×10^{-5}	0.31		$85 \pm 3 \times 10^{-4}$
	$3.8 \times 10^{-7 a}$		0.34		$2.2 \pm 0.2 \times 10^{-1}$

${ }^{a}$ Carried out in $0.15 M$ pyridine solution.
Table III, Specific Rates for $k_{\mathrm{A}}, k_{\mathrm{AH}}, k_{\mathrm{AH}}^{2}$, and $k_{\mathrm{A}-\mathrm{AH}}$ for the Ionization of Compounds 1-5

Compd	k_{A}	k_{AH}	$k_{\mathrm{AH}_{2}}$	$k_{\mathrm{A}-\mathrm{AH}}$
1	8.9×10^{-4}	10^{-7}		3.3×10^{-2}
2		2.3×10^{-3}	2.2×10^{-2}	
3		1.9×10^{-2}	5×10^{-4}	
4	1.6	1.3×10^{-3}		5.5
5	3.7	8×10^{-5}		120

Figure 3. Postulated mechanism of α-proton abstraction in compound 1.
those previously reported as resulting from imine formation. ${ }^{15}$

Of particular interest in the present investigation was the possibility of discerning intramolecular proton abstraction in the ionization process. Some evidence in support of this possibility was adduced in the following fashion. For compounds $\mathbf{2 b}, \mathbf{3 b}$, and $\mathbf{5 b}$ all of which possess the general structure

$$
\mathrm{XCH}_{2} \mathrm{~N}^{+}
$$

(where X is 2-pyridyl, 2-pyridylmethyl, and phenyl, respectively), the logs of the k_{AH} and $k_{\mathrm{AH}_{2}}$ values were plotted against the $\mathrm{p} K_{\mathrm{a}}$ values of the corresponding $\mathrm{XCH}_{2} \mathrm{~N}^{+} \mathrm{H}_{3}$ compounds. Thus, for the $k_{\text {AH }}$ values of $\mathbf{2 b}, \mathbf{3 b}$, and $\mathbf{5 b}$, the $\mathrm{p} K_{\mathrm{a}}$ values of the monoprotonated forms of 2-(aminomethyl) pyridine (8.62 at 25°), 2-(2-aminoethyl)pyridine (9.64 at 25°), and benzylamine (9.33 at $\left.25^{\circ}\right)^{16}$ were used. To obtain the $\mathrm{p} K_{\mathrm{a}}$ values of the diprotonated forms of 2-(aminomethyl)pyridine and 2-(2-aminoethyl)pyridine it was assumed that they would differ from those of the monoprotonated forms by the same increments as the di- and monoprotonated forms of ethylenediamine (3.08 pK units) and trimethylenediamine (1.74 pK units). ${ }^{16}$ If the rates of deprotonation of $\mathbf{2 b}, \mathbf{3 b}$, and $\mathbf{5 b}$ are responsive only to the electron-with-

Figure 4. The rates of the water-induced deprotonation of $\mathbf{2 b}, \mathbf{3 b}$, and 5 b plotted vs. the $\mathrm{p} K_{\mathrm{a}}$ values of the analogous $\mathrm{ArCH}_{2} \mathrm{NH}_{3}{ }^{+}$ammonium ions.
drawing capacity of the XCH_{2} moieties, all of the points should fall on a straight line. A plot of these data, shown in Figure 4, reveals, however, that only the points corresponding to the $k_{\mathrm{AH}_{2}}$ values for $\mathbf{2 b}$ and $\mathbf{3 b}$ and the k_{AH} value for $\mathbf{5 b}$ do so, the points for k_{AH} for $\mathbf{2 b}$ and $\mathbf{3 b}$ both falling well above the line. On the assumption that the specific rates falling on the line represent only intermolecular proton transfer, it is postulated that those specific rates falling above the line represent a combination of intermolecular and intramolecular proton transfer. Although the very low basicity of the pyridine nitrogen in $\mathbf{2 b}$ reduces the likelihood
of intramolecular proton transfer, it was anticipated that this phenomenon would occur in 3b where the basicity of the pyridine is close to that of a carboxylate ion ${ }^{17}$ and where the stereoelectronic requirements appear, on the basis of models, to be attainable. ${ }^{18}$ The present data appear to support this expectation.

Although compound 3b appears to derive more benefit than compound $\mathbf{2 b}$ from intramolecular proton transfer (see Figure 4), the intermolecular water-induced deprotonation of the dication is considerably faster for $\mathbf{2 b}$ than for $\mathbf{3 b}$ (see Table II). The 43 -fold difference in rate is ascribed to the proximity of the positive charge in $\mathbf{2 b}$ to the site of proton abstraction, the positive charge enhancing the acidity of the methyl group via an inductive effect, a field effect, or both.

Experimental Section ${ }^{21}$

\mathbf{N}-($\mathbf{2}^{\prime}$-Pyridinium)-5-amino-2-pentanone Perchlorate (1a). To a solution of $75.9 \mathrm{~g}(0.63 \mathrm{~mol})$ of 5 -chloro-2-pentanone ${ }^{3}$ and 80.0 g (0.75 mol) of trimethyl orthoformate in 250 ml of anhydrous methanol was added one drop of 98% sulfuric acid. The mixture was refluxed for 6 hr , stirred at room temperature for 16 hr , and then worked up to give, after distillation, 93.5 g . (89\%) of a colorless liquid: bp $71-75^{\circ}(12 \mathrm{~mm})$; ir (liquid) $1375\left(\mathrm{CH}_{3}\right), 1120$, 1105,1073 , and $1005 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.20(\mathrm{~s}, 3$, $\mathrm{CH}_{3} \mathrm{CO}_{2}$), 1.57-2.00 (m, 4, C-CH2 $\mathrm{CH}_{2} \mathrm{CO}_{2}$), $3.10\left(\mathrm{~s}, 6, \mathrm{OCH}_{3}\right)$, and $3.52\left(\mathrm{t}, 2, J=6 \mathrm{~Hz}, \mathrm{C}-\mathrm{CH}_{2} \mathrm{Cl}\right)$. U'sing a procedure patterned after one in the literature. ${ }^{22}$ a suspension of $1.8 \mathrm{~g}(0.075 \mathrm{~mol})$ of sodium hydride in 50 ml of toluene was treated with 6.0 g (0.064 mol) of 2-aminopyridine. The mixture was refluxed until hydrogen evolution ceased (ca. 3 hr), and then $10.2 \mathrm{~g}(0.61 \mathrm{~mol})$ of 5 -chloro-2-pentanone dimethyl ketal was added. After refluxing for 20 hr , the mixture was cooled, treated with 15 ml of water, and processed to yield a brown oil which was distilled, extracted with dilute hydrochloric acid, and distilled again to give $6.0 \mathrm{~g}(51 \%)$ of $\mathrm{N}-\mathbf{2}^{\prime}-$ pyridyl)-5-amino-2-pentanone dimethyl ketal as a pale yellow oil: bp 107-108 ${ }^{\circ}$ (0.05 mm); ir $3400(\mathrm{~N}-\mathrm{H}), 3290(\mathrm{~N}-\mathrm{H})$, 1605, 1560 , and 1505 (pyridine), $1175,1153,1075$, and $1050 \mathrm{~cm}^{-1}$ (C$\mathrm{O}) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.18\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.45-1.73(\mathrm{~m}, 4, \mathrm{C}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$), $3.07\left(\mathrm{~s}, 6, \mathrm{OCH}_{3}\right), 3.00-3.67\left(\mathrm{~m}, 2, \mathrm{NCH}_{2} \mathrm{C}\right), 5.35$ ($\mathrm{t}, \mathrm{I}, J=5 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 6.26(\mathrm{~m}, \mathrm{l}, \mathrm{C}-3 \mathrm{H}$ of pyridine), $6.47(\mathrm{~m}, \mathrm{l}$, $\mathrm{C}-5 \mathrm{H}$ of pyridine), $7.27(\mathrm{~m}, \mathrm{I}, \mathrm{C}-4 \mathrm{H}$ of pyridine), and 8.00 ppm ($\mathrm{m}, \mathrm{l}, \mathrm{C}-5 \mathrm{H}$ of pyridine).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 64.26 ; \mathrm{H}, 8.99 ; \mathrm{N}, 12.49$. Found: C, 64.02; H, 8.94; N, 12.44 .

A $3.5-\mathrm{g}$ (0.015 mol) sample of the ketal was added to a solution of 3.5 ml of 70% perchloric acid in 10 ml of water. The solution was heated to 60° and allowed to cool to room temperature over a period of 5 hr and then maintained at 5° for 14 hr . Filtration yielded $3.4 \mathrm{~g}(81 \%)$ of $1 \mathbf{1 a}$ perchlorate which was recrystallized two times from 20% aqueous ethanol to give $2.1 \mathrm{~g}(50 \%)$ of a colorless solid: mp 114-115.50; ir (Nujol) 3315 (N-H), 3210 (N-H), 2020 $\left(\mathrm{ClO}_{4}^{-}\right), 1695(\mathrm{C}=\mathrm{O}), 1650$ and 1615 (pyridinium), and $1150-$ $1050 \mathrm{~cm}^{-1}\left(\mathrm{ClO}_{4}^{-}\right) ;$NMR (DMSO- d_{6}) $\delta 1.75-2.20(\mathrm{~m}, 2$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.20\left(\mathrm{~m}, 2, \mathrm{CH}_{3}\right), 2.72(\mathrm{t}, 2, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 3.22-3.65\left(\mathrm{~m}, 2, \mathrm{NCH}_{2}\right), 6.83-7.33(\mathrm{~m}, 2, \mathrm{C}-3$ and $\mathrm{C}-5 \mathrm{H}$ of pyridine), and $7.88-8.22 \mathrm{ppm}(\mathrm{m}, 2, \mathrm{C}-4$ and $\mathrm{C}-6 \mathrm{H}$ of pyridine).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{5}$: $\mathrm{C}, 43.09$; $\mathrm{H}, 5.39 ; \mathrm{N}, 10.05$. Found: C, 43.11; H, 5.40; N, 10.22.

1-(2'-Pyridiniummethyl)-2-methyl- Δ^{1}-pyrrolinium Diperchlorate (2b). 5-Chloro-2-pentanone ethylene ketal was prepared from 5 -chloro-2-pentanone and ethylene glycol and obtained as a colorless oil after distillation through a 9 in . Vigreux column: bp 84-86.5 ${ }^{\circ}$; ir (liquid) $1375\left(\mathrm{CH}_{3}\right), 1125,1103,1065$, and $1052 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.23\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 1.60-2.10(\mathrm{~m}, 4, \mathrm{C}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$), $3.52\left(\mathrm{~m}, 2, J=6.5 \mathrm{~Hz}, \mathrm{C}-\mathrm{CH}_{2} \mathrm{Cl}\right.$), $3.85 \mathrm{ppm}(\mathrm{s}, 4$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$. A $5.5-\mathrm{g}(0.033 \mathrm{~mol})$ sample of the ketal was treated with $10 \mathrm{~g}(0.09 \mathrm{~mol})$ of 2 -aminomethylpyridine, and the mixture was heated for 45 min at 100° in an atmosphere of nitrogen. The product was isolated as described above to give, after distillation, $5.7 \mathrm{~g}(73 \%)$ of N-(2'-pyridylmethyl)-5-amino-2-pentanone ethylene ketal as a colorless liquid: bp 113-115 ${ }^{\circ}(0.06 \mathrm{~mm})$; ir (liquid) $3320(\mathrm{~N}-\mathrm{H}), 1590,1565$, and 1465 (pyridine), 1250, 1220, 1147 , and $1122 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.22\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.42-1.75$
($\mathrm{m}, 5, \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$), $2.58\left(\mathrm{t}, 2, J=6 \mathrm{~Hz}, \mathrm{NCH}_{2}\right.$), $3.77(\mathrm{~s}, 2$, $\mathrm{PyCH}_{2} \mathrm{~N}$), $3.80\left(\mathrm{~s}, 4, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.91-7.70 \mathrm{ppm}(\mathrm{m}, 3, \mathrm{C}-3$, $\mathrm{C}-4$, and $\mathrm{C}-5 \mathrm{H}$ of pyridine).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 66.07 ; \mathrm{H}, 8.53 ; \mathrm{N}, 11.85$. Found: C, 65.70; H, 8.25; N, 11.59 .

A $2.5-\mathrm{g}(0.01 \mathrm{~mol})$ sample of this material was added to a solution of $3.0 \mathrm{ml}(0.02 \mathrm{~mol})$ of 70% perchloric acid in 5 ml of water, and the product, isolated as described above, was recrystallized three times from 95% ethanol to give $1.9 \mathrm{~g} .(51 \%)$ of the diperchlorate of 2b as colorless crystals: mp 208-210 ; ir (Nujol) 2025 $\left(\mathrm{ClO}_{4}{ }^{-}\right), 1665\left(\mathrm{C}=\mathrm{N}^{+} \mathrm{R}_{2}\right), 1635$ (pyridinium), and 1010-1250 $\left(\mathrm{ClO}_{4}^{-}\right)$; NMR (DMSO- d_{6}) $\delta 1.83-2.60(\mathrm{~m}, 2, \mathrm{C}-4 \mathrm{H}$ of pyrrolinium), $2.63\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 3.38(\mathrm{t}, 2, J=7 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{H}$ of pyrrolinium), $4.18(\mathrm{t}, 2, J=7 \mathrm{~Hz}, \mathrm{C}-5 \mathrm{H}$ of pyrrolinium), $6.27(\mathrm{~s}, 2$, $\mathrm{PyCH}_{2} \mathrm{~N}$), $7.83-8.17$ (m, 2, C-3 and C-5 H of pyridine), 8.22-8.53 ($\mathrm{m}, \mathrm{l}, \mathrm{C}-4 \mathrm{H}$ of pyridine).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{8}$: C, $35.20 ; \mathrm{H}, 4.27 ; \mathrm{N}, 7.47$. Found: C, 35.08; H, 4.23; N, 7.75.
1-[2^{\prime}-($2^{\prime \prime}$-Pyridiniumethyl)]-2-methyl- Δ^{1}-pyrrolinium Diperchlorate (3b). A $36.0-\mathrm{g}(0.3 \mathrm{~mol})$ sample of $2-\left(2^{\prime}-\right.$ aminoethyl $)$ pyridine was treated with $17.0 \mathrm{~g}(0.1 \mathrm{~mol})$ of 5 -chloro-2-pentanone dimeth$y l$ ketal, and the reaction was carried out as described above to yield, after distillation, $11.5 \mathrm{~g}(42 \%)$ of N - $\left[2^{\prime}\right.$-($2^{\prime \prime}$-pyridylethyl) $]-5-$ amino-2-pentanone dimethyl ketal as a pale yellow liquid: bp 118$119^{\circ}(0.05 \mathrm{~mm})$; ir (liquid) $3300(\mathrm{~N}-\mathrm{H})$, and 1580 and $1555 \mathrm{~cm}^{-1}$ (pyridine); NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.17\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.25(\mathrm{~s}, 1, \mathrm{~N}-\mathrm{H})$, $1.33-1.65\left(\mathrm{~m}, 4, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.58(\mathrm{t}, 2, J=6 \mathrm{~Hz}$. $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), $2.92\left(\mathrm{t}, 4, J=0.5 \mathrm{~Hz}, \mathrm{PyCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), 3.08 (s, 6, $\left.\mathrm{OCH}_{3}\right), 6.90-7.20(\mathrm{~m}, 2, \mathrm{C}-3$ and $\mathrm{C}-5 \mathrm{H}$ of pyridine), 7.37-7.70 ($\mathrm{m}, \mathrm{l}, \mathrm{C}-4 \mathrm{H}$ of pyridine), and $8.40-8.57 \mathrm{ppm}$ ($\mathrm{m}, \mathrm{l}, \mathrm{C}-6 \mathrm{H}$ of pyridine).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 66.63 ; \mathrm{H}, 9.59: \mathrm{N}, 11.10$. Found: C, 65.67; H, 9.28; N, 11.10 .

A $5.0-\mathrm{g}(0.02 \mathrm{~mol})$ sample of this material was treated with 10.0 $\mathrm{g}(0.07 \mathrm{~mol})$ of 70% perchloric acid, as described above, to yield $2.0 \mathrm{~g}(26 \%)$ of the diperchlorate of $\mathbf{3 b}$, after four recrystallizations from $85-90 \%$ ethanol, as a colorless solid: mp 189.5-190.5 ; ir (Nujol) $2050\left(\mathrm{ClO}_{4}^{-}\right), 1670\left(\mathrm{C}=\mathrm{N}^{+} \mathrm{R}_{2}\right), 1640,1620$, and 1545 (pyridinium), and $980-1200 \mathrm{~cm}^{-1}\left(\mathrm{ClO}_{4}^{-}\right)$; NMR (DMSO- d_{6}) δ 1.97-2.42 (m, 2, C-4 H of pyrrolinium), $2.45(\mathrm{t}, 3, J=1.5 \mathrm{~Hz}$, CH_{3}), 3.00-3.72 (m, 4, PyCH_{2}), 4.00-4.52 (broad, m, 4 PyCCH $\mathrm{S}_{2} \mathrm{~N}$), $7.83-8.27$ ($\mathrm{m}, 2, \mathrm{C}-3$ and $\mathrm{C}-5 \mathrm{H}$ of pyridinium), 8.43-9.00 (m, 2, C-4 and C-6 H of pyridinium), and 12.67-13.00 (broad, 1, NH).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{8}$: C, 37.02; $\mathrm{H}, 4.86 ; \mathrm{N}, 7.19$. Found: C, 37.04; H, 4.59; N, 7.21 .

1-Phenyl-2-methyl- Δ^{1}-pyrrolinium Perchlorate (4b). From aniline and 5 -chloro-2-pentanone dimethyl ketal, following the procedure described above, \mathbf{N}-phenyl-5-amino-2-pentanone dimethyl ketal was obtained in 80% yield as a colorless oil: bp $105-108^{\circ}$ (0.03 mm); ir (liquid) $3400(\mathrm{~N}-\mathrm{H}), 1600,1500$, and $695 \mathrm{~cm}^{-1}$ (Ar); NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.13\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.42-1.92(\mathrm{~m}, 4$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$), 2.75-3.17 (m, 2, NCH_{2}), $3.03\left(\mathrm{~s}, 6, \mathrm{OCH}_{3}\right)$. 3.47 (s, 1, N-H), 6.52 (m, 3, C-2, C-4, and C-6 H of phenyl), and $7.07 \mathrm{ppm}(\mathrm{m}, 2, \mathrm{C}-3$ and $\mathrm{C}-5 \mathrm{H}$ of phenyl).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, $69.92 ; \mathrm{H}, 9.48 ; \mathrm{N}, 6.27$. Found: C, $70.41 ; \mathrm{H}, 9.45 ; \mathrm{N}, 6.28$.

A $3.65-\mathrm{g}(0.016 \mathrm{~mol})$ sample of this material was treated with 3 ml of 70% perchloric acid and 7 ml of water, and 1.20 g (27%) of the perchlorate of $\mathbf{4 b}$ was obtained, after two recrystallizations from acetone-ether at -20°, as à colorless solid: mp 106-107 ; ir (Nujol) $2030\left(\mathrm{ClO}_{4}^{-}\right), 1665\left(\mathrm{C}=\mathrm{N}^{+} \mathrm{R}_{2}\right), 1150-1100\left(\mathrm{ClO}_{4}^{-}\right)$, and $695 \mathrm{~cm}^{-1}(\mathrm{Ar})$; NMR (DMSO- d_{6}) $\delta 2.33\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 2.17-$ $2.67(\mathrm{~m}, 2, \mathrm{C}-4 \mathrm{H}$ of pyrrolinium), $3.48(\mathrm{t}, 2, J=8 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{H}$ of pyrrolinium), 4.53 (t, $2, J=7 \mathrm{~Hz}, \mathrm{C}-5 \mathrm{H}$ of pyrrolinium), and 7.64 (s, 5, Ar-H).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{4}: \mathrm{C}, 50.87 ; \mathrm{H}_{+} 5.40 ; \mathrm{N}, 5.40$. Found: C, $51.20 ; \mathrm{H}, 5.30 ; \mathrm{N}, 5.37$.

1-Benzyl-2-methyl- Δ^{1}-pyrrolinium Perchlorate (5b). From benzylamine and 5-chloro-2-pentanone dimethyl ketal, following the procedure described above, \boldsymbol{N}-benzyl-5-amino-2-pentanone dimethyl ketal was obtained in 58% yield as a colorless liquid: bp $97-100^{\circ}$ (0.08 mm); ir (liquid) $3400(\mathrm{~N}-\mathrm{H}), 1610,1500$, and $690 \mathrm{~cm}^{-1}$ (Ar); NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.03(\mathrm{~s}, \mathrm{l}, \mathrm{N}-\mathrm{H}), 1.17\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.33-1.75$ ($\mathrm{m}, 4, \mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}$), 2.53 (t, 2, $J=5 \mathrm{~Hz}, \mathrm{NCH}_{2}$), 3.05 (s. 6, OCH_{3}), $3.68\left(\mathrm{~s}, 2, \mathrm{ArCH}_{2} \mathrm{~N}\right.$), and $7.60 \mathrm{ppm}(\mathrm{s}, 5 . \mathrm{Ar}-\mathrm{H})$.

Table IV. Optical Density Values

$20 \% \mathrm{HClO}_{4}$ $\left(-H_{0}=1.01\right)^{23 a}$	pH 10	$\mathrm{pH} 1.98 a$	pH 1.48	$\mathrm{p} K_{\mathrm{a}}$
1.458	0.730	0.881		1.40
1.478	0.740	0.890		1.38
1.472	0.738	0.874		1.36
1.116	0.553		0.823	1.44
1.124	0.559		0.827	1.43
1.120	0.558		0.826	1.44
			Average	1.41 ± 0.06

a^{a} Determined spectroscopically with 4 -nitroaniline ($\mathrm{p} K_{\mathrm{a}}=$ $0.99^{24 b}$).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{C}, 70.85 ; \mathrm{H}, 9.77$; $\mathrm{N}, 5.90$. Found: C, 70.99; H, 9.66; N, 6.68 .

A $3.8-\mathrm{g}(0.016 \mathrm{~mol})$ sample of this material was treated with 3 ml of 70% perchloric acid in 7 ml of water, and $1.25 \mathrm{~g}(30 \%)$ of the perchlorate of $\mathbf{5 b}$ was obtained, after two recrystallizations from acetone-ether at -20°, as a colorless solid: mp 54-55 ${ }^{\circ}$; ir (Nujol) $2020\left(\mathrm{ClO}_{4}^{-}\right), 1665\left(\mathrm{C}=\mathrm{N}^{+} \mathrm{R}_{2}\right), 1500(\mathrm{Ar}), 1020-1175\left(\mathrm{ClO}_{4}{ }^{-}\right)$, and $700 \mathrm{~cm}^{-1}(\mathrm{Ar}) ;$ NMR (acetone- $\left.d_{6}\right) \delta 2.00-2.50(\mathrm{~m}, 2, \mathrm{C}-4 \mathrm{H}$ of pyrrolinium), $2.70\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 3.43(\mathrm{t}, 2, J=7 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{H}$ of pyrrolinium), $4.08(\mathrm{t}, 2, J=8 \mathrm{~Hz}, \mathrm{C}-5 \mathrm{H}$ of pyrrolinium), 5.13 (s, $2, \mathrm{ArCH}_{2} \mathrm{~N}$), and $7.48 \mathrm{ppm}(\mathrm{s}, 5, \mathrm{Ar}-\mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClNO}_{4}$: C. 52.74: H, 5.86; N, 5.12 . Found: C, 52.55: H, 5.78; N, 5.07.
N-Isopropylidenepyrrolidinium perchlorate was prepared by the literature procedure ${ }^{3}$ and obtained as a colorless solid: mp 229$231^{\circ}$ (iit. $\left.{ }^{3} 232-233^{\circ}\right)$; ir (Nujol) $2010\left(\mathrm{ClO}_{4}{ }^{-}\right), 1680\left(\mathrm{C}=\mathrm{N}^{+} \mathrm{R}_{2}\right)$, and $1000-1200 \mathrm{~cm}^{-1}\left(\mathrm{ClO}_{4}^{-}\right)$: NMR (DMSO- d_{6}) $\delta 1.83-2.33$ (m. $4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.43 (q, $6 . J=2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$). $3.67-4.17 \mathrm{ppm}$ (broad, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$).

1,2-Dimethyl- Δ^{1}-pyrrolinium perchlorate was prepared by the literature procedure ${ }^{4}$ and obtained as a colorless solid: mp $239-$ 241° (lit. ${ }^{4}$ 239-240.5 ${ }^{\circ}$); ir (Nujol) $1700\left(\mathrm{C}=\mathrm{N}^{+} \mathrm{R}_{2}\right.$) (lit. ${ }^{4} 1701$ cm^{-1}) and $1000-1200 \mathrm{~cm}^{-1}\left(\mathrm{ClO}_{4}^{-}\right)$; NMR (DMSO- d_{6}) $\delta 1.80-$ $2.50\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.37$ (s. $3 . \mathrm{N}=\mathrm{CCH}_{3}$), 2.95-3.50 (m, $\left.2, \mathrm{~N}=\mathrm{CCH}_{2}\right), 3.40\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right)$, and $3.82-4.33 \mathrm{ppm}(\mathrm{t}, 2 . \mathrm{J}=$ $7.5 \mathrm{~Hz}, \mathrm{NCH}_{2}$).
$\mathbf{p} K_{\mathbf{a}}$ Determinations. Employing methods described in the literature, the $\mathrm{p} K_{\mathrm{a}}$ values were determined by a spectrophotometric method ${ }^{23 a}$ and/or a titrimetric method. ${ }^{23 b}$ With the spectrophotometric method the extinction coefficients for the protonated form were measured at a pH at least two $\mathrm{p} K$ units below the $\mathrm{p} K_{\mathrm{a}}$ of the compound, and those for the unprotonated form were measured at a pH at least two $\mathrm{p} K$ units above the $\mathrm{p} K_{\mathrm{a}}$ of the compound. A typical example is provided by the data in Table IV for compound $\mathbf{2 b}$.

For the potentiometric titrations the following procedure was used. A known amount (calculated to bring the final concentration to $2.5-5.0 \times 10^{-3} \mathrm{M}$) of the compound to be measured was weighed into a $10-\mathrm{ml}$ volumetric flask. To this was added 8 ml of carbon dioxide-free water and $10-50 \mu$ of a 1.00 N sodium hydroxide solution, and the volume was brought to 10 ml . From the measured pH of the solution the $\mathrm{p} K_{\mathrm{a}}$ was calculated from the expression $\mathrm{p} K_{\mathrm{a}}=\mathrm{pH}+\log [\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$where $[\mathrm{HA}]=[\mathrm{HA}]_{\text {initial }}-$ $\left[\mathrm{OH}^{-}\right]_{\text {added }}$ and $\left[\mathrm{A}^{-}\right]=\left[\mathrm{OH}^{-}\right]_{\text {added }}$.

Deuterium Exchange Experiments. The rate of exchange of hydrogen for deuterium in the methyl group of compounds $\mathbf{1 - 5}$ was measured by NMR spectrometry, the position of the methyl resonances for these compounds being $\delta 2.20$ for $\mathbf{1}, \delta 2.63$ for $\mathbf{2}, \delta 2.45$ for $3, \delta 2.33$ for 4 , and $\delta 2.70$ for 5 .

Method for Fast Reactions. To an accurately weighed amount of compound in a medium thickness wall NMR tube was added $50 \mu \mathrm{l}$ of dimethyl sulfoxide- d_{6}. These materials were forced to the bottom of the tube, and 200μ l of the appropriate acidic or basic $\mathrm{D}_{2} \mathrm{O}$ solution was then added in such a fashion that it remained near the top of the NMR tube, separated from the dimethyl sulfoxide solution at the bottom. The tube was placed in the probe and allowed to stand for 20 min to attain the temperature of the probe $\left(41^{\circ}\right)$. It was then removed, the upper and lower solutions were quickly mixed, and it was put back in the probe. Measurements of the area of the methyl resonance at 2-10 min intervals were made until 90% or more of the methyl protons had been exchanged. The resonance from the aromatic protons was used as an internal standard in the integration of the area of the methyl resonance. The tube was then

Table V. Data for Determination of Exchange Rates

Time, min	Area $\mathrm{CH}_{3}{ }^{a}$	Area - area ∞	log (area - area ∞)	Area Ar-H
0	65.5	31.5	1.50	29
2	63.5	29.5	1.47	27
4	62.5	28.5	1.45	26
6	59	25	1.40	27
8	56.5	22.5	1.35	26
10	55	21	1.32	27
15	49	15	1.18	25
20	46	12	1.08	26
30	40.5	6.5	0.81	26
40	37	3	0.48	26
600	34	0		26

${ }^{a}$ The integration in this instance includes a portion of a CH_{2} resonance, this accounting for the rather large infinity value.
removed from the probe and kept at $40-50^{\circ}$ for 24 hr to obtain an infinity reading.

Method for Slow Reactions. To an accurately weighed amount of compound contained in the NMR tube was added $50 \mu \mathrm{l}$ of dimethyl sulfoxide- d_{6} followed by $200 \mu l$ of the appropriate acidic or basic $\mathrm{D}_{2} \mathrm{O}$ solution. The solution was allowed to attain the temperature of the probe $\left(41^{\circ}\right)$, and the measurements then made in the manner described above at $15-40 \mathrm{~min}$ intervals.

Method for Very Slow Reactions. For very slow reactions the NMR tube was placed in a constant bath held at 41° and removed at 12-24 hr intervals for NMR determination.

Determination of Rate Constants for Exchange. The first-order rate constants were determined using a linear least-squares program ${ }^{25}$ on a Hewlett-Packard 9100A calculator. A typical example is provided by the data (Table V) for the exchange reaction of compound $\mathbf{2 b}$. The least-squares treatment of these data gives $k=$ $2.18 \pm 0.08 \times 10^{-2} \mathrm{~min}^{-1}$.

Acknowledgment. This research was supported, in part, by Grants No. GP-4951 and GP-1 1087 from the National Science Foundation and Grant No. 5 R01 AM- 2398 from the National Institutes of Health. The authors express their indebtedness to Professor Joseph Kurz of Washington University for his invaluable advice concerning some of the details of the kinetic investigations and to Professor Jack Hine of The Ohio State University for his aid in the interpretation of the results. Professor Hine proved to be an extraordinarily industrious and perceptive referee of this manuscript, and his suggestions have resulted in a substantial improvement in its presentation.

References and Notes

(1) C. D. Gutsche, D. Redmore, R. S. Buriks, K. Nowotny, H. Grassner, and C. W. Armbruster, J. Am. Chem. Soc., 89, 1235 (1967).
(2) E. Grazi, P. T. Rowley, T. Cheng, O. Tchola, and B. L. Horecker, Biochem. Biophys. Res. Commun., 9, 38 (1962); B. L. Horecker, P. T. Rowley, E. Grazi, T. Cheng, and O. Tchola, Biochem. Z., 338, 36 (1963).
(3) G. W. Cannon, R. C. Ellis, and J. R. Leal, Org. Synth., 31, 74 (1951).
(4) N. J. Leonard and J. V. Paukstelis, J. Org. Chem., 28, 3021 (1963).
(5) R. Lukeš and V. Dèdek, Collect. Czech. Chem. Commun., 24, 391 (1959).
(6) M. Levy, J. Biol. Chem., 109, 361 (1935).
(7) J. J. Elliott and S. F. Mason, J. Chem. Soc., 2352 (1959).
(8) M. L. Bender and Y.-L. Chow, J. Am. Chem. Soc., 81, 3929 (1959).
(9) R. Adams and J. E. Mahan, J. Am. Chem. Soc., 64, 2588 (1942).
(10) There are numerous examples in which the basicity of pyridine is reduced by a neighboring ammonium group. For example, the $p K_{1}$ of $2-$ (N, N-dimethylaminomethyl)pyridine is 2.58 (R. B. Barlow and J. T. Hamilton, Br. J. Pharmacol., 18, 510 (1962)) and the pK K_{1} of 2-(β-aminoethyl)pyridine is 3.80 (present work).
(11) H. C. Brown and X. R. Mihm, J. Am. Chem. Soc., 77, 1723 (1955); R. H. Linnell, J. Org. Chem., 25, 290 (1960).
(12) J. Hine, J. G. Houston, J. H. Jensen, and J. Mulders, J. Am. Chem. Soc., 87, 5050 (1965).
(13) For example, J. A. Gowland and G. H. Schmid, Can. J. Chem., 47, 2953 (1969), determined the change in $\mathrm{p} K_{\mathrm{BH}^{+}}$for pyridine in a series of DMSO $-\mathrm{H}_{2} \mathrm{O}$ mixtures and found that for a $1: 4$ mixture (v / v) the $\mathrm{pK}_{\mathrm{BH}}{ }^{+}$ for pyridine decreased only 0.2 pK units.
(14) R. P. Bell and O. M. Lidwell, Proc. R. Soc. London, Ser. A, 176, 88 (1940); K. F. Bonhoeffer and W. D. Walters, Z. Phys. Chem., Abt. A, 181, 44 (1938).
(15) M. L. Bender and A. Williams, J. Am. Chem. Soc., 88, 2502 (1966).
(16) D. D. Perrin, 'Dissociation Constants of Organic Bases in Aqueous Solution'", Butterworths, London, 1965.
(17) Intramolecular proton abstraction by carboxylate ion in a protonated imire has been postulated (see Table V of ref 15), and carboxylate ion has been proposed as the proton-abstracting moiety In aldolases (H. P. Meloche and J. P. Glusker, Science, 181, 350 (1973).
(18) Numerous studies on the ionization of carbonyl compounds ${ }^{19}$ have shown that the preferred conformation for proton removal places the departing proton in a plane perpendicular to the plane of the $\mathrm{O}=\mathrm{C}-\mathrm{C}$ system, i.e., in the plane of the π-bond system of the $\mathrm{C}=\mathrm{O}$ group. Almost certainly the same preference holds for α-proton removal from imines and iminium compounds, and in testing the geometrlc requirements for intramolecular proton abstraction in imines, Hine and coworkers ${ }^{20}$ have shown that a pseudo-elght-membered relationship provides the most suitable arrangement in the compounds that they studied; i.e.

(19) E. J. Corey and R. A. Sneen, J. Am. Chem. Soc., 78, 6269 (1956); H. E Zimmerman in "Molecular Rearrangements", Vol. 1, P. DeMayo, Ed., Interscience, New York, N.Y., 1963, pp 345-372.
(20) J. Hine, M. S. Cholod, and J. H. Jensen, J. Am. Chem. Soc., 93, 2321 (1971).
(21) All melting points and boiling points are uncorrected. The infrared spectra were measured on a Perkin-Elmer Infracord instrument. The ultraviolet spectra were measured on Cary Models 11 and 14 spectrometers. The nuclear magnetic resonance spectra were recorded on a Varian A-60A spectrometer, and the resonances are reported as parts per milllon downfleld shift from tetramethylsllane used as an internal reference. Microanalyses were performed by Dr. Josef Zak, Mikroanalytisches Laboratorium, Vienna, Austria
(22) T. M. Sharp, J. Chem. Soc., 1855 (1939)
(23) A. Albert and E. P. Serjeant, 'lonization Constants of Acids and Bases'' Wiley, New York, N.Y., 1962: (a) pp 69-82, (b) pp 16-68.
(24) C. H. Rochester, "Acidity Functions", Academic Press, New York, N.Y. 1970: (a) p 45, (b) p 15.
(25) We are indebted to Professor J. L. Kurz for providing this program.

Photoelectron Spectroscopy of Carbonyls. Urea, Oxamide, Oxalic Acid, and Oxamic Acid ${ }^{1}$

J. L. Meeks, J. F. Arnett, D. B. Larson, and S. P. McGlynn*2
Contribution from the Coates Chemical Laboratories, The Louisiana State University, Baton Rouge, Louisiana 70803, and the Department of Chemistry, Cumberland College, Williamsburg, Kentucky 40769. Received September 14, 1974

Abstract

Photoelectron spectra are reported for urea, oxamide, oxalic acid, and oxamic acid. These spectra are interpreted in terms of a composite molecule model in which formaldehyde and formamide PES spectra play key roles. The correlative interpretation of the PES spectra of the larger molecules devolves on the manner of evolution of MO sets: n and π for $\mathrm{H}_{2} \mathrm{CO}$; n, π, and π_{\circ} for HCONH_{2} and $\mathrm{HCOOH} ; \mathrm{n}, \pi, \pi_{\oplus}$, and π_{Θ} for $\mathrm{H}_{2} \mathrm{NCONH}_{2} ;$ and $n_{+}, n_{-}, \pi_{\oplus}, \pi_{\ominus}, \pi_{+}$, and π_{-}for the three dicarbonyls. CNDO/s calculations are of considerable help in developing the composite molecule model and provide a remarkably good representation of experiment.

α-Dicarbonyl systems are of common occurrence ${ }^{3}$ and they possess chemotherapeutic advantage ${ }^{4}$ in cancer. Despite considerable work on the electronic structure of α-dicarbonyls, ${ }^{5}$ no resolution of a number of important questions has been achieved. These questions relate to: (i) circular dichroism and chirality; ${ }^{6}$ (ii) the nature of their low-energy electronically excited states; ${ }^{7}$ (iii) their unique emission properties; ${ }^{8}$ and (iv) their orbital energy level structure. ${ }^{9}$ Photoelectron spectroscopy (PES) can provide some information on question iv and may be of indirect help in resolving questions $\mathrm{i}-\mathrm{iii}$.

The intent of this work is the analysis of the photoelectron spectra of oxamide and oxamic acid. The PES of the monocarbonyl analogs, formic acid and formamide, are available ${ }^{10}$ but no data exist for their α-dicarbonyl counterparts. Additionally, in the correlative efforts which we undertook in order to relate the one-electron levels of these molecules, it seemed that urea occupied an important slot in the hierarchy $\mathrm{HCONH}_{2} \rightarrow \mathrm{H}_{2} \mathrm{NCONH}_{2} \rightarrow \mathrm{H}_{2} \mathrm{NCO}-$ CONH_{2}. Hence, this work is also concerned with the PES of urea and its interpretation.

The discussion of oxalic acid given here consists of the presentation of an energy level diagram deduced from more detailed studies. ${ }^{11}$ A general discussion ot PES data and assignments for monocarbonyls and α-dicarbonyls is available ${ }^{12}$ and should be consulted for nomenclature. A summary of ionization data for monocarbonyls, α-dicarbonyls, and tricarbonyls is also available. ${ }^{13}$

Experimental and Computational

PES spectra were recorded on a Perkin-Elmer Model PS-18 photoelectron spectrometer with a $10-\mathrm{cm}$ radius cylindrical elec-
trostatic field deflection analyzer. A Bendix "Channeltron" Electronic Multiplier (Model CEM-4028) was used as a detector. The ionization energy was provided by the $584 \AA(21.22 \mathrm{eV}) \mathrm{HeI}$ resonance line. Solid samples were sublimed in a heated probe, the temperature of which was adjusted for maximum count rate. The range of temperatures used for solid samples was 72 to 119°. Spectra were calibrated with regard to both energy and resolution using the ${ }^{2} \mathrm{P}_{1 / 2}$ and ${ }^{2} \mathrm{P}_{3 / 2}$ lines of xenon; the resolution was in the range $20-25 \mathrm{meV}$.

Oxamide (MCB), oxamic acid (MCB), and oxalic acid (Baker) were purified by recrystallization from water. Urea (Baker Reagent Grade) was used without further purification.

Semiempirical CNDO/s calculations were carried out for formaldehyde, formamide, urea, oxamide, oxalic acid, and oxamic acid in geometries appropriate to their ground states. ${ }^{14}$ The MO notation used has been discussed previously ${ }^{12}$ and is quite straightforward. The MO's of a monocarbonyl such as HCONH_{2} are labeled n, π, and π_{0}. They have the following significance: n is a nonbonding $\sigma \mathrm{MO}$ with dominant amplitude on the carbonyl oxygen; π is the π MO of the carbonyl group in $\mathrm{H}_{2} \mathrm{CO}$, appropriately delocalized to embrace the nitrogen center in formamide; and π_{0} is a π MO with large amplitude on the amine group. In the case of formic acid, the n and π notations retain the same meaning as in formamide but π_{0} now refers to a π MO with large amplitude on the hydroxyl group. In a symmetric dicarbonyl such as oxamide, the MO notation is expanded, in a quite obvious way, to $\mathrm{n}_{+}, \mathrm{n}_{-}$, $\pi_{+}, \pi_{-}, \pi_{\oplus}$, and π_{θ}, where the extra $+/-$ subscripts denote bonding/antibonding combinations of the constituent formamide MO's. This latter notation is inexact in the case of unsymmetrical dicarbonyls such as oxamic acid but, for want of a better notation, is used here. In the case of urea which may be supposed to consist of two amide groups, the single carbonyl entity doing double duty, the appropriate notation becomes n, π, π_{\oplus}, and π_{Θ} and should cause no confusion.

All PES spectra are supposed to consist of simple one-electron ionization events and are so interpreted. In the case of oxamide,

